

Institut für Biomedizinische Technik

Master Thesis

Camera Localisation and Tracking for Visually Navigated Bronchoscopy

Motivation

A vision-based bronchoscopic navigation system helps physicians locate the bronchoscope during the endobronchial inspection and diagnostic procedures by applying video-CT registration techniques and works like a GPS system. However, the bronchoscopic video-CT registration is still challenging due to the feature-poor scene, occlusions, image artefacts and patients' coughing[1]. To suppress the influences of these challenging factors, improvements in registration methods (e.g., 3D-3D registration methods which register the reconstructed 3D airway structure based on depth estimation to the preprocedural 3D CT model, 2D-2D registration methods which register the real bronchoscopic video to the bronchoscopic video rendered from the pre procedural 3D CT model [2]) should be made.

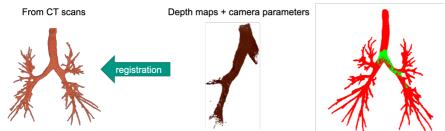


Fig. Example of 3D-3D registration of reconstructed airway structure based on depth estimation to 3D CT model using ICP

Project Description

The goal of this work is to localise the bronchoscope camera with regard to preprocudural CTs based on bronchoscopic camera views. The scope of the work includes:

- Literature research on vision-based bronchoscopic navigation and video-CT registration methods
- Compare 2D-2D registration and 3D-3D registration methods in the context of bronchoscopic navigation (e.g. learning-based approaches)
- Develop a validation approach applied on clinical data

With this project, you will try to answer the following questions:

- What are the requirements of camera localisation in visually navigated bronchoscopy?
- Which state-of-the-art registration method outperforms when applied to visually navigated bronchoscopy? What could be further improved to enhance the registration performance?
- What are the limitations for 2D-2D registration/ 3D-3D registration approaches when applied to visually navigated bronchoscopy?
- How to validate the approach on clinical data?

Skills needed:

- Passion for solving problems in biomedical field
- Python, PyTorch or Tensorflow framework
- Deep learning and machine learning fundamentals is a plus
- Independent working ability
- Contributing own ideas is always welcome

Karlsruhe Institute of Technology

Research Group

Optical Technologies in Medicine

Project

Data-driven depth estimation for visually navigated bronchoscopy [3]

Fields of Work

Registration, Camera localisation, Deep learning, Image processing, Programming

Study Course

Electrical engineering, Information technology, Physics, Computer science or comparable study courses

Start

As soon as possible

If you are interested or have any questions, please get in touch with:

M.Sc. Lu Guo

Bldg. 30.33, Room 413.2 Fritz-Haber-Weg 1 76131 Karlsruhe

eMail: lu.guo@kit.edu

Phone: +49 721 608-47299

Refefences:

 Visually Navigated Bronchoscopy using Three Cycle-Consistent Generative Adversarial Network for Depth Estimation, Artur Banach et al.
Interactive CT-Video Registration for the Continuous Guidance of Bronchoscpy, Scott A. Merritt et al.
A cGAN-based network for depth estimation from bronchoscopic images, Lu Guo et al.